Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -hexadecanoato- $\kappa^2 O:O$)bis[(2,2'-bipyridine- $\kappa^2 N, N'$)(hexadecanoato- κO)-copper(II)] methanol disolvate

Ahmad Nazeer Che Mat, Norbani Abdullah,* Hamid Khaledi* and Jia Ti Tee

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: norbania@um.edu.my, khaledi@siswa.um.edu.my

Received 1 April 2011; accepted 11 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.050; wR factor = 0.127; data-to-parameter ratio = 17.4.

The asymmetric unit of the title compound, $[Cu_2(C_{16}H_{31}O_2)_4]$ -(C₁₀H₈N₂)₂]·2CH₃OH, contains one half-molecule of the metal complex solvated by a methanol molecule. In the complex, two of the metal atoms are doubly bridged by two monodentate bridging hexadecanoate ligands around a center of inversion. The square-pyramidal geometry around each Cu^{II} ion is completed by a terminal hexadecanoate O atom and two N atoms from a 2,2'-bipyridine ligand. The alkyl chains of the carboxylate ligands are arranged in a parallel manner with an all-*trans* conformation. In the crystal, a $\pi - \pi$ interaction formed by the bipyridine rings [centroid-centroid separation = 3.7723(17) Å] and intermolecular C-H···O hydrogen bonds link the complex molecules into infinite chains along the *b* axis. An $O-H \cdots O$ interaction between the methanol solvate and one of the carboxylate O atoms is also observed.

Related literature

For background to metallomesogens, see: Giroud-Godquin (1998). For the structures of similar copper(II) complexes, see: Antolini *et al.* (1985); Zhang *et al.* (2006). For a description of the geometry of complexes with a five-coordinate metal atom, see: Addison *et al.* (1984).

Experimental

Crystal data $\begin{bmatrix} Cu_{2}(C_{16}H_{31}O_{2})_{4}(C_{10}H_{8}N_{2})_{2} \end{bmatrix} - \frac{1}{2CH_{4}O}$ $M_{r} = 1525.16$ Triclinic, $P\overline{1}$ a = 9.6064 (3) Å b = 9.7506 (3) Å c = 24.0234 (8) Å $\alpha = 92.559$ (2)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.814, T_{max} = 0.953

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.127$ S = 0.998008 reflections 466 parameters 1 restraint $\gamma = 95.516 (2)^{\circ}$ $V = 2210.14 (12) \text{ Å}^3$ Z = 1Mo K\alpha radiation $\mu = 0.54 \text{ mm}^{-1}$ T = 296 K $0.40 \times 0.27 \times 0.09 \text{ mm}$

 $\beta = 98.681 \ (2)^{\circ}$

13457 measured reflections 8088 independent reflections 5498 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.31\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.24\ e\ \mathring{A}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C33-H33···O1 ⁱ	0.93	2.50	3.093 (3)	122
C33−H33···O3 ⁱ	0.93	2.57	3.071 (3)	114
C35−H35···O2 ⁱⁱ	0.93	2.42	3.129 (3)	134
C39−H39····O4 ⁱⁱⁱ	0.93	2.41	3.258 (4)	152
$C41 - H41 \cdots O5^{iv}$	0.93	2.46	3.153 (4)	131
C42-H42···O1	0.93	2.59	3.096 (3)	115
O5−H5···O2	0.86 (2)	1.89 (3)	2.732 (4)	166 (6)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y, -z + 1; (iii) x, y - 1, z; (iv) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors thank the Malaysian government for the Fundamental Research Grant Scheme (FRGS FP046/2008,

metal-organic compounds

FP017/2009), and the University of Malaya Grants (RG039/09SUS, PS339/2009 C).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2420).

References

- Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Antolini, L., Menabue, L. & Saladini, M. (1985). *Inorg. Chem.* **24**, 1219–1222. Barbour, L. J. (2001). *J. Supramol. Chem*, **1**, 189–191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Giroud-Godquin, A. M. (1998). Coord. Chem. Rev. 180, 1485-1499.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, Z.-G., Dong, X.-D., Li, Y.-P., Pu, X.-H., Huo, F.-J. & Zhu, M.-L. (2006). Acta Cryst. E62, m2326–m2327.

Acta Cryst. (2011). E67, m599-m600 [doi:10.1107/S1600536811013559]

Bis(μ -hexadecanoato- $\kappa^2 O:O$)bis[(2,2'-bipyridine- $\kappa^2 N,N'$)(hexadecanoato- κO)copper(II)] methanol disolvate

A. N. Che Mat, N. Abdullah, H. Khaledi and J. T. Tee

Comment

Metallomesogens are metal containing liquid crystals. Active research in this field started around 30 years ago (Giroud-Godquin, 1998), and these materials have found useful applications as ordered solvents, catalysts, and templates for synthesis, optical and ferroelectric systems, electronic or ionic conductors, and membranes. However, most metallomesogens have high melting points (greater than 523 K), high viscosity, and narrow isotropic range. Our research group is focused on functional low-temperature and thermally stable metallomesogens for spintronic, electronic, photonic and catalytic applications. To achieve this, we applied the concept of symmetry reduction and use of ligands with long (linear or branched) alkyl chains. Herein, we report the crystal structure of one such complex.

The title compound is a centrosymmetric dinuclear copper(II) complex in which the metal ions are five-coordinate in a square-pyramidal geometry with the τ value (Addison *et al.*, 1984) of 0.016. The coordination geometry around each metal center is defined by two nitrogen atoms from a 2,2'-bipyridine and two O atoms from two monodentate hexadecanoato ligands at the basal positions. The square-pyramidal coordination of Cu(II) is completed by bonding to the bridging hexadecanoate O atom in the axial direction with Cu—O distance of 2.349 (2) Å. Within this double bridged dimer, the Cu···Cu distance [3.3740 (6) Å] is comparable to those observed in similar structures (Antolini *et al.*, 1985; Zhang *et al.*, 2006). The alkyl chains of the carboxylate ligands are arranged in a parallel manner with an all *trans* conformation. The methanol solvent molecule is a hydrogen bond donor to the carboxylate O2 atom. In the crystal, intermolecular C—H···O interactions (Table 1) connect the molecules into infinite chains along the *b* axis. The one-dimensional link is supplemented by a π - π stacking interaction between the anti-parallely arranged bipyridine rings of the adjacent molecules, the pyridyl rings centroid-centroid separation being 3.7723 (17) Å. Intramolecular C—H···O interactions are also observed.

Experimental

An aqueous solution of copper(II)nitrate trihydrate (5.7 g, 23.4 mmol) was added portionwise to a hot ethanolic solution (150 ml) of hexadecanoic acid (6 g, 23.4 mmol) and *p*-aminobenzoic acid (3.2 g, 23.6 mmol). The green solution formed was allowed to cool to room temperature, and then an excess amount of ammonia (30%) was added. The purple solution formed was stirred at room temperature overnight, and then heated gently to remove excess ammonia and get the pale blue precipitate of $[Cu_2(p-H_2NC_6H_4COO)_2(CH_3(CH_2)_{14}COO)_2]$. 2,2'-Bipyridine (0.19 g, 1.2 mmol) was added to a suspension of $[Cu_2(p-H_2NC_6H_4COO)_2(CH_3(CH_2)_{14}COO)_2]$ (1 g, 1.1 mmol) in a 1:2 mixture of methanol-ethanol (60 ml). The mixture was heated for 30 minutes and the black precipitate was filtered off. The small blue crystals obtained from the filtrate, on standing overnight, were recrystallized from methanol-THF (1:1), to give the dark blue crystals of the title compound after two weeks.

Refinement

The C-bound hydrogen atoms were placed at calculated positions (C–H 0.93–0.97 Å), and were treated as riding on their parent carbon atoms. The oxygen-bound H atom was located in a difference Fourier map and refined with distance restraint of O–H 0.82 ± 0.02 Å. For hydrogen atoms U*iso*(H) were set to 1.2-1.5 times U*eq*(carrier atom).

Figures

Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level. Atom labels for consecutively numbered rings and alkyl chains, as well as C-bound hydrogen atoms have been omitted for clarity. Symmetry code: ' = -x+2, -y+1, -z+1.

Fig. 2. Packing view looking down the crystallographic *a* axis.

Bis(μ -hexadecanoato- $\kappa^2 O:O$)bis[(2,2'-bipyridine- $\kappa^2 N, N'$)(hexadecanoato- κO)copper(II)] methanol disolvate

Crystal data

$[Cu_{2}(C_{12}H_{21}O_{2})_{2}(C_{12}H_{2}N_{2})_{2}]\cdot 2CH_{2}O_{2}$	7 = 1
$[Cu_2(C_{16}^{-13}, 0_2)_4(C_{10}^{-18}, 0_2)_2]$ 2C1140	L = 1
$M_r = 1525.16$	F(000) = 830
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.146 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.6064 (3) Å	Cell parameters from 2321 reflections
b = 9.7506 (3) Å	$\theta = 2.5 - 21.5^{\circ}$
c = 24.0234 (8) Å	$\mu = 0.54 \text{ mm}^{-1}$
$\alpha = 92.559 \ (2)^{\circ}$	T = 296 K
$\beta = 98.681 \ (2)^{\circ}$	Block, blue
$\gamma = 95.516 \ (2)^{\circ}$	$0.40 \times 0.27 \times 0.09 \text{ mm}$
$V = 2210.14 (12) \text{ Å}^3$	

Data collection

Bruker APEXII CCD diffractometer	8088 independent reflections
Radiation source: fine-focus sealed tube	5498 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.034$
φ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.814, \ T_{\max} = 0.953$	$k = -11 \rightarrow 11$
13457 measured reflections	<i>l</i> = −29→29

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.127$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.99	$w = 1/[\sigma^2(F_0^2) + (0.061P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
8088 reflections	$(\Delta/\sigma)_{\rm max} = 0.011$
466 parameters	$\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.91189 (3)	0.34121 (3)	0.498126 (15)	0.03823 (13)
O1	0.7446 (2)	0.42240 (19)	0.51491 (9)	0.0475 (5)
O2	0.6702 (2)	0.2457 (2)	0.56137 (10)	0.0619 (6)
O3	0.96731 (19)	0.53048 (18)	0.44537 (8)	0.0426 (5)
O4	0.9778 (2)	0.7002 (2)	0.38786 (10)	0.0602 (6)
N1	1.0740 (2)	0.2359 (2)	0.48224 (10)	0.0378 (6)
N2	0.8058 (2)	0.1916 (2)	0.44362 (10)	0.0394 (6)
C1	0.6751 (3)	0.3687 (3)	0.55073 (14)	0.0452 (8)
C2	0.5984 (3)	0.4670 (3)	0.58304 (14)	0.0542 (9)
H2A	0.5558	0.5314	0.5577	0.065*
H2B	0.5236	0.4154	0.5987	0.065*
C3	0.7025 (3)	0.5457 (3)	0.63028 (14)	0.0556 (9)
H3A	0.7496	0.4796	0.6534	0.067*
H3B	0.7741	0.5998	0.6138	0.067*
C4	0.6373 (3)	0.6407 (3)	0.66775 (14)	0.0606 (9)
H4A	0.5932	0.7091	0.6450	0.073*
H4B	0.5635	0.5874	0.6834	0.073*
C3 H3A H3B C4 H4A H4B	0.7025 (3) 0.7496 0.7741 0.6373 (3) 0.5932 0.5635	0.5457 (3) 0.4796 0.5998 0.6407 (3) 0.7091 0.5874	0.63028 (14) 0.6534 0.6138 0.66775 (14) 0.6450 0.6834	0.0556 (9) 0.067* 0.067* 0.0606 (9) 0.073*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C5	0.7410 (4)	0.7138 (4)	0.71538 (15)	0.0671 (10)
H5A	0.8128	0.7689	0.6993	0.081*
H5B	0.7878	0.6448	0.7369	0.081*
C6	0.6812 (4)	0.8064 (4)	0.75564 (15)	0.0641 (10)
H6A	0.6378	0.8781	0.7347	0.077*
H6B	0.6072	0.7525	0.7709	0.077*
C7	0.7877 (4)	0.8737 (4)	0.80388 (15)	0.0657 (10)
H7A	0.8621	0.9264	0.7884	0.079*
H7B	0.8304	0.8017	0.8249	0.079*
C8	0.7305 (4)	0.9680 (4)	0.84449 (15)	0.0666 (10)
H8A	0.6861	1.0392	0.8235	0.080*
H8B	0.6576	0.9150	0.8607	0.080*
C9	0.8383 (4)	1.0361 (4)	0.89138 (15)	0.0695 (11)
H9A	0.9104	1.0896	0.8749	0.083*
H9B	0.8837	0.9645	0.9117	0.083*
C10	0.7853 (4)	1.1292 (4)	0.93316 (15)	0.0681 (10)
H10A	0.7387	1.2000	0.9127	0.082*
H10B	0.7140	1.0753	0.9500	0.082*
C11	0.8932 (4)	1.1989 (4)	0.97973 (16)	0.0720 (11)
H11A	0.9389	1.1283	1.0006	0.086*
H11B	0.9650	1.2522	0.9630	0.086*
C12	0.8389 (4)	1.2925 (4)	1.02059 (15)	0.0724 (11)
H12A	0.7682	1.2386	1.0377	0.087*
H12B	0.7914	1.3617	0.9995	0.087*
C13	0.9456 (4)	1.3652 (4)	1.06694 (16)	0.0772 (11)
H13A	0.9927	1.2960	1.0882	0.093*
H13B	1.0167	1.4188	1.0499	0.093*
C14	0.8910 (4)	1.4587 (4)	1.10716 (16)	0.0781 (12)
H14A	0.8196	1.4050	1.1240	0.094*
H14B	0.8439	1.5277	1.0857	0.094*
C15	0.9958 (5)	1.5325 (5)	1.15394 (19)	0.0965 (14)
H15A	1.0422	1.4641	1.1760	0.116*
H15B	1.0678	1.5861	1.1374	0.116*
C16	0.9367 (5)	1.6263 (5)	1.19290 (19)	0.1150 (18)
H16A	0.8961	1.6985	1.1722	0.172*
H16B	1.0110	1.6659	1.2221	0.172*
H16C	0.8649	1.5748	1.2095	0.172*
C17	0.9304 (3)	0.5849 (3)	0.39814 (13)	0.0421 (7)
C18	0.8202 (3)	0.4979 (3)	0.35562 (13)	0.0512 (8)
H18A	0.7488	0.4538	0.3754	0.061*
H18B	0.7739	0.5582	0.3293	0.061*
C19	0.8802 (3)	0.3880 (3)	0.32266 (13)	0.0482 (8)
H19A	0.9534	0.4315	0.3036	0.058*
H19B	0.9238	0.3257	0.3487	0.058*
C20	0.7695 (3)	0.3054 (3)	0.27940 (14)	0.0565 (9)
H20A	0.6993	0.2584	0.2990	0.068*
H20B	0.7219	0.3691	0.2551	0.068*
C21	0.8245 (3)	0.1999 (3)	0.24292 (14)	0.0590 (9)
H21A	0.8656	0.1318	0.2668	0.071*

H21B	0.8994	0.2455	0.2253	0.071*
C22	0.7130 (4)	0.1261 (4)	0.19725 (15)	0.0657 (10)
H22A	0.6424	0.0743	0.2151	0.079*
H22B	0.6660	0.1948	0.1756	0.079*
C23	0.7670 (4)	0.0293 (4)	0.15724 (15)	0.0678 (10)
H23A	0.8096	-0.0422	0.1786	0.081*
H23B	0.8410	0.0800	0.1408	0.081*
C24	0.6571 (4)	-0.0390 (4)	0.10995 (15)	0.0671 (10)
H24A	0.5851	-0.0930	0.1264	0.081*
H24B	0.6117	0.0324	0.0895	0.081*
C25	0.7126 (4)	-0.1317 (4)	0.06851 (15)	0.0679 (10)
H25A	0.7834	-0.0772	0.0517	0.081*
H25B	0.7598	-0.2019	0.0891	0.081*
C26	0.6041 (4)	-0.2025 (4)	0.02180 (15)	0.0679 (10)
H26A	0.5341	-0.2584	0.0385	0.081*
H26B	0.5558	-0.1325	0.0015	0.081*
C27	0.6611 (4)	-0.2929 (4)	-0.01978 (15)	0.0679 (10)
H27A	0.7115	-0.3611	0.0008	0.082*
H27B	0.7295	-0.2363	-0.0370	0.082*
C28	0.5540 (4)	-0.3672 (4)	-0.06597 (15)	0.0697 (10)
H28A	0.4855	-0.4239	-0.0488	0.084*
H28B	0.5037	-0.2991	-0.0867	0.084*
C29	0.6122 (4)	-0.4565 (4)	-0.10674 (15)	0.0720 (11)
H29A	0.6636	-0.5234	-0.0857	0.086*
H29B	0.6802	-0.3992	-0.1239	0.086*
C30	0.5078 (4)	-0.5336 (4)	-0.15314 (16)	0.0751 (11)
H30A	0.4400	-0.5910	-0.1359	0.090*
H30B	0.4561	-0.4667	-0.1741	0.090*
C31	0.5658 (5)	-0.6224 (4)	-0.19391 (17)	0.0912 (14)
H31A	0.6188	-0.6884	-0.1730	0.109*
H31B	0.6322	-0.5647	-0.2117	0.109*
C32	0.4606 (5)	-0.7003 (5)	-0.23923 (18)	0.1087 (17)
H32A	0.4007	-0.7659	-0.2226	0.163*
H32B	0.5096	-0.7480	-0.2649	0.163*
H32C	0.4039	-0.6370	-0.2593	0.163*
C33	1.2115 (3)	0.2658 (3)	0.50422 (13)	0.0452 (8)
H33	1.2389	0.3473	0.5264	0.054*
C34	1.3123 (3)	0.1815 (3)	0.49531 (14)	0.0481 (8)
H34	1.4065	0.2064	0.5108	0.058*
C35	1.2743 (3)	0.0604 (3)	0.46349 (14)	0.0495 (8)
H35	1.3415	0.0007	0.4579	0.059*
C36	1.1338 (3)	0.0283 (3)	0.43977 (13)	0.0462 (8)
H36	1.1054	-0.0529	0.4175	0.055*
C37	1.0366 (3)	0.1174 (3)	0.44938 (12)	0.0374 (7)
C38	0.8836 (3)	0.0946 (3)	0.42662 (12)	0.0367 (7)
C39	0.8228 (3)	-0.0172(3)	0.39013 (13)	0.0497 (8)
H39	0.8//8	-0.0836	0.3/8/	0.0572 (0)
C40	0.0794 (4)	-0.02/2(3)	0.3/133(14)	0.0572(9)
H40	0.0364	-0.1009	0.3468	0.069*

C41	0.5997 (3)	0.0712 (3)	0.38858 (14)	0.0539 (9)
H41	0.5027	0.0649	0.3761	0.065*
C42	0.6662 (3)	0.1794 (3)	0.42469 (13)	0.0456 (8)
H42	0.6124	0.2464	0.4364	0.055*
O5	0.6666 (4)	0.1341 (4)	0.66351 (13)	0.1153 (12)
Н5	0.656 (7)	0.175 (5)	0.6327 (15)	0.173*
C43	0.7910 (5)	0.1699 (5)	0.6985 (2)	0.1218 (19)
H43A	0.8472	0.0934	0.7000	0.183*
H43B	0.7724	0.1940	0.7356	0.183*
H43C	0.8415	0.2475	0.6845	0.183*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0363 (2)	0.0308 (2)	0.0444 (2)	0.00502 (14)	-0.00033 (16)	-0.01253 (15)
01	0.0442 (11)	0.0392 (11)	0.0593 (15)	0.0086 (9)	0.0092 (11)	-0.0083 (11)
02	0.0750 (15)	0.0396 (13)	0.0710 (17)	0.0061 (11)	0.0141 (13)	-0.0066 (11)
O3	0.0505 (12)	0.0330 (10)	0.0406 (12)	0.0066 (9)	-0.0032 (10)	-0.0084 (9)
O4	0.0753 (15)	0.0399 (12)	0.0614 (15)	0.0001 (12)	0.0018 (12)	0.0020 (11)
N1	0.0379 (12)	0.0287 (12)	0.0446 (15)	0.0048 (10)	0.0013 (11)	-0.0066 (11)
N2	0.0396 (13)	0.0326 (12)	0.0444 (15)	0.0048 (10)	0.0029 (12)	-0.0072 (11)
C1	0.0363 (16)	0.0461 (19)	0.049 (2)	0.0046 (14)	-0.0028 (15)	-0.0146 (16)
C2	0.0430 (17)	0.0542 (19)	0.063 (2)	0.0080 (15)	0.0056 (16)	-0.0197 (17)
C3	0.0507 (18)	0.0547 (19)	0.057 (2)	0.0079 (16)	0.0008 (17)	-0.0182 (17)
C4	0.059 (2)	0.064 (2)	0.055 (2)	0.0191 (17)	-0.0021 (17)	-0.0208 (18)
C5	0.066 (2)	0.070 (2)	0.063 (2)	0.0134 (19)	0.0036 (19)	-0.0224 (19)
C6	0.063 (2)	0.069 (2)	0.058 (2)	0.0150 (18)	0.0021 (18)	-0.0217 (18)
C7	0.068 (2)	0.068 (2)	0.060 (2)	0.0147 (19)	0.0034 (19)	-0.0177 (19)
C8	0.069 (2)	0.073 (2)	0.055 (2)	0.0106 (19)	0.0043 (19)	-0.0191 (19)
C9	0.068 (2)	0.075 (2)	0.062 (2)	0.009 (2)	0.004 (2)	-0.021 (2)
C10	0.070 (2)	0.075 (2)	0.056 (2)	0.008 (2)	0.0067 (19)	-0.0178 (19)
C11	0.067 (2)	0.078 (3)	0.065 (3)	0.003 (2)	0.001 (2)	-0.021 (2)
C12	0.076 (2)	0.075 (2)	0.061 (2)	0.010(2)	0.000 (2)	-0.024 (2)
C13	0.077 (3)	0.079 (3)	0.069 (3)	0.003 (2)	0.001 (2)	-0.020 (2)
C14	0.081 (3)	0.082 (3)	0.063 (3)	0.008 (2)	-0.007 (2)	-0.019 (2)
C15	0.092 (3)	0.106 (3)	0.079 (3)	-0.002 (3)	-0.006 (3)	-0.028 (3)
C16	0.140 (4)	0.109 (4)	0.084 (3)	0.004 (3)	-0.004 (3)	-0.039 (3)
C17	0.0434 (16)	0.0392 (17)	0.0420 (19)	0.0115 (14)	-0.0002 (15)	-0.0090 (15)
C18	0.0495 (18)	0.0500 (18)	0.049 (2)	0.0106 (15)	-0.0102 (15)	-0.0089 (15)
C19	0.0520 (18)	0.0460 (17)	0.0429 (19)	0.0037 (15)	0.0000 (15)	-0.0081 (15)
C20	0.059 (2)	0.0553 (19)	0.049 (2)	-0.0006 (16)	-0.0012 (17)	-0.0160 (16)
C21	0.0565 (19)	0.061 (2)	0.053 (2)	0.0002 (17)	-0.0026 (17)	-0.0195 (17)
C22	0.064 (2)	0.065 (2)	0.062 (2)	-0.0002 (18)	0.0034 (19)	-0.0245 (19)
C23	0.064 (2)	0.072 (2)	0.060 (2)	0.0040 (19)	-0.0010 (19)	-0.0249 (19)
C24	0.066 (2)	0.068 (2)	0.061 (2)	-0.0003 (19)	0.0018 (19)	-0.0249 (19)
C25	0.068 (2)	0.071 (2)	0.059 (2)	0.0068 (19)	-0.0021 (19)	-0.0239 (19)
C26	0.070 (2)	0.070 (2)	0.057 (2)	0.0007 (19)	0.0009 (19)	-0.0244 (19)
C27	0.071 (2)	0.071 (2)	0.056 (2)	0.0050 (19)	0.0004 (19)	-0.0215 (19)

C28	0.074 (2)	0.071 (2)	0.057 (2)	0.002 (2)	0.0013 (19)	-0.0211 (19)
C29	0.075 (2)	0.075 (2)	0.059 (2)	0.010(2)	-0.005 (2)	-0.023 (2)
C30	0.082 (3)	0.078 (3)	0.058 (2)	0.005 (2)	-0.004 (2)	-0.020 (2)
C31	0.102 (3)	0.094 (3)	0.069 (3)	0.016 (3)	-0.006 (2)	-0.036 (2)
C32	0.115 (4)	0.118 (4)	0.080 (3)	0.013 (3)	-0.015 (3)	-0.047 (3)
C33	0.0416 (16)	0.0331 (15)	0.058 (2)	0.0040 (13)	0.0018 (15)	-0.0085 (14)
C34	0.0368 (16)	0.0427 (17)	0.064 (2)	0.0066 (14)	0.0046 (16)	-0.0007 (16)
C35	0.0483 (18)	0.0391 (17)	0.065 (2)	0.0141 (14)	0.0161 (16)	-0.0040 (16)
C36	0.0509 (18)	0.0346 (16)	0.053 (2)	0.0048 (14)	0.0114 (16)	-0.0117 (14)
C37	0.0434 (16)	0.0287 (14)	0.0398 (17)	0.0027 (12)	0.0075 (14)	-0.0034 (13)
C38	0.0441 (16)	0.0300 (14)	0.0345 (16)	0.0012 (12)	0.0036 (13)	-0.0024 (12)
C39	0.0553 (19)	0.0392 (17)	0.050(2)	0.0023 (15)	0.0021 (16)	-0.0167 (15)
C40	0.065 (2)	0.0416 (18)	0.055 (2)	-0.0066 (16)	-0.0075 (17)	-0.0188 (16)
C41	0.0457 (17)	0.0539 (19)	0.053 (2)	-0.0041 (16)	-0.0114 (16)	-0.0064 (16)
C42	0.0405 (16)	0.0432 (17)	0.051 (2)	0.0041 (14)	0.0019 (15)	-0.0063 (15)
O5	0.116 (2)	0.135 (3)	0.078 (2)	-0.052 (2)	0.003 (2)	0.003 (2)
C43	0.120 (4)	0.148 (5)	0.085 (4)	-0.033 (4)	0.003 (3)	0.012 (3)

Geometric parameters (Å, °)

Cu1—O1	1.945 (2)	C19—C20	1.512 (4)
Cu1—O3 ⁱ	1.9617 (17)	С19—Н19А	0.9700
Cu1—N2	2.005 (2)	C19—H19B	0.9700
Cu1—N1	2.019 (2)	C20—C21	1.507 (4)
Cu1—O3	2.349 (2)	C20—H20A	0.9700
O1—C1	1.268 (4)	C20—H20B	0.9700
O2—C1	1.235 (4)	C21—C22	1.515 (4)
O3—C17	1.289 (3)	C21—H21A	0.9700
O3—Cu1 ⁱ	1.9617 (17)	C21—H21B	0.9700
O4—C17	1.222 (3)	C22—C23	1.499 (4)
N1—C33	1.346 (3)	C22—H22A	0.9700
N1—C37	1.357 (3)	C22—H22B	0.9700
N2—C42	1.342 (3)	C23—C24	1.511 (4)
N2—C38	1.347 (3)	C23—H23A	0.9700
C1—C2	1.519 (4)	С23—Н23В	0.9700
C2—C3	1.519 (4)	C24—C25	1.505 (4)
C2—H2A	0.9700	C24—H24A	0.9700
C2—H2B	0.9700	C24—H24B	0.9700
C3—C4	1.506 (4)	C25—C26	1.504 (4)
С3—НЗА	0.9700	C25—H25A	0.9700
С3—Н3В	0.9700	С25—Н25В	0.9700
C4—C5	1.502 (4)	C26—C27	1.502 (4)
C4—H4A	0.9700	C26—H26A	0.9700
C4—H4B	0.9700	C26—H26B	0.9700
C5—C6	1.507 (4)	C27—C28	1.502 (4)
С5—Н5А	0.9700	С27—Н27А	0.9700
С5—Н5В	0.9700	С27—Н27В	0.9700
C6—C7	1.505 (4)	C28—C29	1.487 (5)
С6—Н6А	0.9700	C28—H28A	0.9700

С6—Н6В	0.9700	C28—H28B	0.9700
С7—С8	1.510 (4)	C29—C30	1.502 (4)
С7—Н7А	0.9700	С29—Н29А	0.9700
С7—Н7В	0.9700	С29—Н29В	0.9700
C8—C9	1.493 (4)	C30—C31	1.484 (5)
C8—H8A	0.9700	C30—H30A	0.9700
C8—H8B	0.9700	С30—Н30В	0.9700
C9—C10	1.501 (4)	C31—C32	1.493 (5)
С9—Н9А	0.9700	C31—H31A	0.9700
С9—Н9В	0.9700	C31—H31B	0.9700
C10-C11	1.495 (4)	C32—H32A	0.9600
C10—H10A	0.9700	С32—Н32В	0.9600
C10—H10B	0.9700	С32—Н32С	0.9600
C11—C12	1.494 (4)	C33—C34	1.363 (4)
C11—H11A	0.9700	С33—Н33	0.9300
C11—H11B	0.9700	C34—C35	1.365 (4)
C12—C13	1.496 (4)	C34—H34	0.9300
C12—H12A	0.9700	C35—C36	1.384 (4)
C12—H12B	0.9700	С35—Н35	0.9300
C13—C14	1.486 (5)	C36—C37	1.372 (4)
C13—H13A	0.9700	С36—Н36	0.9300
C13—H13B	0.9700	C37—C38	1.481 (4)
C14—C15	1.497 (5)	C38—C39	1.391 (3)
C14—H14A	0.9700	C39—C40	1.377 (4)
C14—H14B	0.9700	С39—Н39	0.9300
C15—C16	1.490 (5)	C40—C41	1.371 (4)
C15—H15A	0.9700	C40—H40	0.9300
C15—H15B	0.9700	C41—C42	1.377 (4)
C16—H16A	0.9600	C41—H41	0.9300
C16—H16B	0.9600	C42—H42	0.9300
C16—H16C	0.9600	O5—C43	1.359 (5)
C17—C18	1.519 (4)	O5—H5	0.86 (2)
C18—C19	1.513 (4)	С43—Н43А	0.9600
C18—H18A	0.9700	С43—Н43В	0.9600
C18—H18B	0.9700	C43—H43C	0.9600
O1—Cu1—O3 ⁱ	90.51 (8)	C20—C19—C18	113.0 (2)
O1—Cu1—N2	95.52 (9)	С20—С19—Н19А	109.0
O3 ⁱ —Cu1—N2	172.47 (8)	C18—C19—H19A	109.0
O1—Cu1—N1	173.45 (9)	C20-C19-H19B	109.0
$O3^{i}$ —Cu1—N1	93.43 (8)	C18—C19—H19B	109.0
N2—Cu1—N1	80.17 (9)	H19A—C19—H19B	107.8
O1—Cu1—O3	89.86 (8)	C21—C20—C19	115.3 (3)
O3 ⁱ —Cu1—O3	77.36 (8)	C21—C20—H20A	108.4
N2-Cu1-O3	107 08 (8)	C19—C20—H20A	108.4
N1—Cu1—O3	96 10 (8)	C21—C20—H20B	108.4
C1 - O1 - Cu1	119.20 (19)	C19—C20—H20B	108.4
$C_{17} O_{2} C_{11}^{11}$	113 34 (17)	$H_{20} = C_{20} = H_{20} = H_{20}$	107.5
$C_{17} = -C_{03} = -C_{01}$	142.72(12)	1207 - 20 - 120B	107.5 114.1(2)
C1/	142.73 (18)	U20-U21-U22	114.1 (3)

Cu1 ⁱ —O3—Cu1	102.64 (8)	C20—C21—H21A	108.7
C33—N1—C37	117.7 (2)	C22—C21—H21A	108.7
C33—N1—Cu1	126.72 (18)	C20—C21—H21B	108.7
C37—N1—Cu1	115.38 (17)	C22—C21—H21B	108.7
C42—N2—C38	118.8 (2)	H21A—C21—H21B	107.6
C42—N2—Cu1	125.58 (19)	C23—C22—C21	115.3 (3)
C38—N2—Cu1	115.63 (17)	C23—C22—H22A	108.4
O2—C1—O1	124.4 (3)	C21—C22—H22A	108.4
02—C1—C2	119.8 (3)	C23—C22—H22B	108.4
O1—C1—C2	115.8 (3)	C21—C22—H22B	108.4
C3—C2—C1	109.7 (2)	H22A—C22—H22B	107.5
C3—C2—H2A	109.7	C22—C23—C24	115.4 (3)
C1—C2—H2A	109.7	С22—С23—Н23А	108.4
C3—C2—H2B	109.7	C24—C23—H23A	108.4
C1—C2—H2B	109.7	С22—С23—Н23В	108.4
H2A—C2—H2B	108.2	С24—С23—Н23В	108.4
C4—C3—C2	114.7 (3)	H23A—C23—H23B	107.5
С4—С3—НЗА	108.6	C25—C24—C23	115.2 (3)
С2—С3—НЗА	108.6	C25—C24—H24A	108.5
C4—C3—H3B	108.6	C23—C24—H24A	108.5
С2—С3—Н3В	108.6	C25—C24—H24B	108.5
НЗА—СЗ—НЗВ	107.6	C23—C24—H24B	108.5
C5—C4—C3	113.9 (3)	H24A—C24—H24B	107.5
C5—C4—H4A	108.8	C26—C25—C24	115.9 (3)
C3—C4—H4A	108.8	C26—C25—H25A	108.3
C5—C4—H4B	108.8	C24—C25—H25A	108.3
C3—C4—H4B	108.8	С26—С25—Н25В	108.3
H4A—C4—H4B	107.7	С24—С25—Н25В	108.3
C4—C5—C6	116.4 (3)	H25A—C25—H25B	107.4
C4—C5—H5A	108.2	C27—C26—C25	115.3 (3)
С6—С5—Н5А	108.2	C27—C26—H26A	108.4
C4—C5—H5B	108.2	C25—C26—H26A	108.4
C6—C5—H5B	108.2	C27—C26—H26B	108.4
H5A—C5—H5B	107.3	C25—C26—H26B	108.4
C7—C6—C5	114.7 (3)	H26A—C26—H26B	107.5
С7—С6—Н6А	108.6	C26—C27—C28	116.2 (3)
С5—С6—Н6А	108.6	С26—С27—Н27А	108.2
С7—С6—Н6В	108.6	С28—С27—Н27А	108.2
С5—С6—Н6В	108.6	С26—С27—Н27В	108.2
H6A—C6—H6B	107.6	С28—С27—Н27В	108.2
C6—C7—C8	115.7 (3)	H27A—C27—H27B	107.4
С6—С7—Н7А	108.4	C29—C28—C27	115.5 (3)
С8—С7—Н7А	108.4	C29—C28—H28A	108.4
С6—С7—Н7В	108.4	C27—C28—H28A	108.4
C8—C7—H7B	108.4	C29—C28—H28B	108.4
H7A—C7—H7B	107.4	C27—C28—H28B	108.4
C9—C8—C7	114.9 (3)	H28A—C28—H28B	107.5
С9—С8—Н8А	108.5	C28—C29—C30	116.9 (3)
С7—С8—Н8А	108.5	С28—С29—Н29А	108.1

С9—С8—Н8В	108.5	С30—С29—Н29А	108.1
С7—С8—Н8В	108.5	С28—С29—Н29В	108.1
H8A—C8—H8B	107.5	С30—С29—Н29В	108.1
C8—C9—C10	116.6 (3)	H29A—C29—H29B	107.3
С8—С9—Н9А	108.2	C31—C30—C29	116.9 (3)
C10—C9—H9A	108.2	C31—C30—H30A	108.1
С8—С9—Н9В	108.2	C29—C30—H30A	108.1
С10—С9—Н9В	108.2	C31—C30—H30B	108.1
Н9А—С9—Н9В	107.3	C29—C30—H30B	108.1
C11—C10—C9	116.7 (3)	H30A—C30—H30B	107.3
C11—C10—H10A	108.1	$C_{30} - C_{31} - C_{32}$	116.4 (4)
С9—С10—Н10А	108.1	C30—C31—H31A	108.2
C11—C10—H10B	108.1	C32—C31—H31A	108.2
C9—C10—H10B	108.1	C30—C31—H31B	108.2
H10A—C10—H10B	107.3	C32—C31—H31B	108.2
C12-C11-C10	116.0 (3)	$H_{31}A = C_{31} = H_{31}B$	107.3
C12 $C11$ $H11A$	108.3	C_{31} C_{32} H_{32A}	109.5
C10-C11-H11A	108.3	$C_{31} - C_{32} - H_{32B}$	109.5
C12—C11—H11B	108.3	H32A_C32_H32B	109.5
C10-C11-H11B	108.3	$C_{31} - C_{32} - H_{32}C_{32}$	109.5
H11A-C11-H11B	107.4	$H_{32}A = C_{32} = H_{32}C$	109.5
C11 - C12 - C13	116.9 (3)	H32R C32_H32C	109.5
C_{11} C_{12} H_{12A}	108.1	N1_C33_C34	107.5 122.7(3)
C13 - C12 - H12A	108.1	N1_C33_H33	122.7 (3)
C11—C12—H12B	108.1	C34—C33—H33	118.6
C13_C12_H12B	108.1	$C_{33} - C_{34} - C_{35}$	110.0 119.7(3)
H12A - C12 - H12B	107.3	C33_C34_H34	120.2
C_{14} C_{13} C_{12} C_{12}	116.5 (3)	C35-C34-H34	120.2
C14 - C13 - H13A	108.2	$C_{33} - C_{35} - C_{36}$	120.2 118.6 (3)
C12 - C13 - H13A	108.2	C34—C35—H35	120.7
C12 = C13 = H13R	108.2	C36-C35-H35	120.7
C12_C13_H13B	108.2	$C_{30} = C_{35} = 1135$	120.7 110 A (3)
H13A_C13_H13B	107.3	$C_{37} - C_{36} - H_{36}$	117.4 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.5	$C_{35} = C_{36} = H_{36}$	120.3
$C_{13} = C_{14} = C_{13}$	107.9	N1 C37 C36	120.3 121.8(2)
C15_C14_H14A	107.9	N1_C37_C38	121.0(2) 113.6(2)
C_{13} C_{14} H_{14} H_{14}	107.9	11 - 037 - 038	113.0(2) 124.6(2)
C_{15} C_{14} H_{14D}	107.9	$N_{2} = C_{3}^{2} = C_{3}^{2}$	124.0(2) 121.7(2)
	107.9	N2 C28 C27	121.7(3) 114.8(2)
$\Pi_{14} = C_{14} = \Pi_{14} = \Pi_{14}$	107.2	$N_2 = C_3 = C_3 7$	114.0(2) 122.4(2)
$C_{10} - C_{15} - C_{14}$	113.7 (4)	$C_{39} = C_{38} = C_{37}$	123.4(3)
C10 - C15 - H15A	108.4	C40 - C39 - C38	110.5 (5)
C14—C15—H15A	108.4	$C_{40} - C_{59} - H_{59}$	120.8
C14 C15 U15D	108.4	C38-C39-H39	120.0
	108.4	C41 - C40 - C39	120.2 (5)
	107.4	$C_{41} - C_{40} - \Pi_{40}$	119.9
С15—С16—П16А	109.5	$C_{39} - C_{40} - H_{40}$	119.9
	109.5	C40 - C41 - C42	118.0 (3)
	109.5	C40 - C41 - H41	120.7
CI3-CI0-HI0C	109.3	C42—C41—H41	120.7

H16A—C16—H16C	109.5	N2—C42—C41	122.4 (3)		
H16B—C16—H16C	109.5	N2—C42—H42	118.8		
O4—C17—O3	123.0 (3)	C41—C42—H42	118.8		
O4—C17—C18	121.1 (3)	С43—О5—Н5	116 (4)		
O3—C17—C18	115.9 (3)	O5—C43—H43A	109.5		
C19—C18—C17	113.9 (2)	O5—C43—H43B	109.5		
C19-C18-H18A	108.8	H43A—C43—H43B	109.5		
C17-C18-H18A	108.8	O5—C43—H43C	109.5		
C19-C18-H18B	108.8	H43A—C43—H43C	109.5		
C17—C18—H18B	108.8	H43B—C43—H43C	109.5		
H18A—C18—H18B	107.7				
Symmetry codes: (i) $-x+2, -y+1, -z+1$.					

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A			
C33—H33…O1 ⁱ	0.93	2.50	3.093 (3)	122			
C33—H33···O3 ⁱ	0.93	2.57	3.071 (3)	114			
C35—H35…O2 ⁱⁱ	0.93	2.42	3.129 (3)	134			
C39—H39…O4 ⁱⁱⁱ	0.93	2.41	3.258 (4)	152			
C41—H41···O5 ^{iv}	0.93	2.46	3.153 (4)	131			
C42—H42…O1	0.93	2.59	3.096 (3)	115			
O5—H5…O2	0.86 (2)	1.89 (3)	2.732 (4)	166 (6)			
Symmetry codes: (i) $-x+2$, $-y+1$, $-z+1$; (ii) $-x+2$, $-y$, $-z+1$; (iii) x , $y-1$, z ; (iv) $-x+1$, $-y$, $-z+1$.							

Fig. 1

Fig. 2